本站支持尊重有效期内的版权/著作权,所有的资源均来自于互联网网友分享或网盘资源,一旦发现资源涉及侵权,将立即删除。希望所有用户一同监督并反馈问题,如有侵权请联系站长或发送邮件到ebook666@outlook.com,本站将立马改正
本书消除了智能聊天领域的门槛,目的是培养复合型技术人才。本书通过多个案例,逐步介绍聊天机器人开发各个阶段可能遇到的技术难题、业务需求以及相对应的技术解决方案和实践解析,让读者身临其境,探寻智能聊天机器人的奥秘。本书覆盖面全,涵盖了所有最关键的技术。可实践性强,通过大量实践才能积累宝贵的经验,最大限度地根据理论知识弥补技术方案的空白。这有利于技术人员针对不同的业务需求,制定更为合理的技术方案。
随着人工智能技术的发展,人类对智能化服务更加渴望,聊天机器人成为研发热门之一。
《智能聊天机器人:核心技术与算法》从聊天机器人所涉及的多个方面出发,先理论后实践,让读者不仅能了解其中的原理,还能自己动手编程。
《智能聊天机器人:核心技术与算法》共9章,第1章以该领域的背景知识作为开篇,重点介绍了聊天系统中的主要模块;第2章阐述了语音识别和隐马尔可夫模型;第3章侧重于通用的自然语言处理技术;第4章讲解如何使用信息检索技术,来实现问答型的聊天系统;第5章介绍一些主流的机器学习算法,以及如何使用这些算法来提升基于信息检索的问答系统;第6章介绍推荐系统相关的知识以及常见的推荐算法,并将其应用到问答系统中;第7章介绍如何使用深度学习来优化问答系统;第8章讲述了聊天系统的前沿领域——知识图谱;第9章讨论任务型和闲聊型聊天系统中更有挑战性的几个课题。
《智能聊天机器人:核心技术与算法》可为高等院校计算机科学、信息科学、电子工程和人工智能等领域的科研人员提供参考,也可作为相关专业本科生和研究生教学的参考书,对于从事深度学习及其应用的开发人员同样具有参考价值。
黄申,博士,2015年美国杰出人才,微软学者,IBMExtremeBlue天才计划成员。2006年博士毕业于上海交通大学计算机科学与工程专业,师从俞勇教授,拥有20余篇国际论文和30多项国际专利。他有超过20年机器学习和大数据领域的从业经验,现任Glassdoor机器学习资深研发经理,曾任职于LinkedIn全球数据科学部、微软亚洲研究院、IBM研究院、eBay中国研发中心、1号店和***飞牛网。出版过《大数据架构和算法实现之路:电商系统的技术实战》《大数据架构商业之路:从业务需求到技术方案》《程序员的数学》等技术书籍和专栏,累计读者数万人。
毋庸置疑,聊天机器人是最近几年最火的人工智能领域之一,各种智能家居和语音助手层出不穷。可是,中国真正有实力构建此类系统的公司并不多。笔者阅读了不少业界的观察性文章,也走访了一些业内的专家,发现导致这一现状的原因主要在于以下几点:
涉及的技术范围广,技术人才数量有限。聊天系统需要“理解”人类的语音和语意,然后进行一定的“思考”,甚至帮助用户“完成”任务。这其中就涉及了语音识别、自然语言处理和理解、信息检索、推荐、知识图谱、机器学习、深度学习等多个领域的专业知识,而精通所有这些领域的人才少之又少。
发展速度快,技术含量高。如果说语音识别、自然语言处理和信息检索领域相对成熟,那么机器学习、深度学习、知识图谱领域仍处于高速发展中,这类技术相对于普通的应用开发而言,需要更多理论知识和实践经验的积累。而商业价值的挖掘程度,往往取决于使用的技术深度。越是钻研得深入,所产生的价值就会越大。
成熟方案少。很多智能的和大数据的技术是免费的,这对于盈利模式而言无疑是重大利好。不过代价就是其中存在稳定性和易用性问题。现在有一些大型技术公司提供更成熟的解决方案,但是价格高昂,对于经费并不宽裕的初创公司而言,选择余地太小。
以上这些因素,都会形成进入智能聊天领域的门槛,而高门槛势必导致相关技术在工业界应用的步伐放缓。为了解决这个问题,企业需要培养自己的复合型技术人才,才能让企业使用适合的工具、获得准确的数据、制定合理的实现方案。为此,笔者萌生了一个想法:通过本书帮助企业快速建立复合型团队,并搭建基础的智能聊天系统。笔者在写作过程中,力求做到以下几点: